SYNTHESIS OF (Z)- AND (E)-3-(2-CHLOROPYRIDIN-5-YLMETHYL) OXIMINO-(22E,24R)-ERGOSTA-4,7,22-TRIENES AND THEIR OXIDATIVE TRANSFORMATIONS

N. V. Kovganko,^{*} S. N. Sokolov, Yu. G. Chernov, and A. V. Baranovskii

UDC 547.689.6

(Z)- and (E)-3-(2-chloropyridin-5-ylmethyl)oximino-(22E,24R)-ergosta-4,7,22-trienes (**5-6**) were synthesized by chemical transformation of ergosterol. Several oxidative transformations of them were studied. It was found that oxidation of these compounds by chromium(VI) oxide formed the corresponding O-substituted 3-ketoximes of the mycosteroid (22E,24R)-ergosta-4,7,22-trien-3,6-dione (7) and (**8**), which contained α -chloropyridine fragments characteristic of biologically active neonicotinoids. It was shown that oxidation of **5** and **6** by selenium dioxide occurred with formation of the corresponding 9 α -hydroxy derivatives **9** and **10**.

Keywords: (*Z*)- and (*E*)-3-(2-chloropyridin-5-ylmethyl)oximino-(22*E*,24*R*)-ergosta-4,7,22-trienes, *O*-substituted 3-ketoximes of (22*E*,24*R*)-ergosta-4,7,22-trien-3,6-dione, *O*-(2-chloropyridin-5-ylmethyl)hydroxylamine, synthesis.

We synthesized previously [1] a series of *O*-substituted 6-ketoximes of 3β ,5-dihydroxy-6-ketosteroids. One of the characteristic features of the synthesized compounds was the presence in them of an α -chloropyridine group, which is typical of modern neonicotinoid insecticides [2] and the pharmacologically valuable alkaloid epibatidine [3]. Biological testing of these steroidal oximes discovered compounds with high insecticidal activity. This prompted us to continue research in this area, in particular, to synthesize analogous *O*-substituted 3-ketoximes of (22*E*,24*R*)-ergosta-4,7,22-trien-3,6-dione (1). Steroid 1 is a natural compound that was observed in the marine sponge *Raphidostila incisa* [4] and fungi *Ganoderma lucidum* [5, 6] and *Calvatia cyathiformis* [5, 7]. This compound can also be obtained by chemical synthesis from ergosterol **2** [8].

Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141, Belarus, Minsk, e-mail: kovganko@iboch.bas-net.by. Translated from Khimiya Prirodnykh Soedinenii, No. 4, July–August, 2011, pp. 525–528. Original article submitted January 17, 2011.

C atom	5	6	7	8	9	10
1	32.6	34.2	34.2	35.7	28.2	29.3
2	19.9	25.3	19.7	24.7	21.3	26.1
3	154.5	154.9	156.3	153.2	150.0	153.9
4	116.0	110.3	124.1	116.2	119.8	114.2
5	157.6	158.3	166.9	167.5	157.5	154.5
6	32.8	33.3	186.1	187.6	32.8	33.0
7	116.8	116.4	124.4	124.4	119.9	119.2
8	139.8	139.9	147.8	150.5	142.2	142.0
9	46.5	46.7	46.8	47.4	76.7	76.1
10	37.7	38.7	39.0	39.9	43.8	44.6
11	22.5	22.4	22.3	22.1	27.0	27.0
12	39.6	39.5	39.0	38.9	36.0	35.9
13	43.8	43.8	44.6	44.7	43.4	43.7
14	55.5	55.4	56.4	56.5	51.4	51.4
15	23.3	23.3	23.1	23.0	23.4	23.4
16	28.5	28.5	28.2	28.1	28.5	28.5
17	56.3	56.3	56.5	56.5	56.1	56.0
18	12.3	12.3	12.9	12.9	11.6	11.6
19	21.5	21.8	20.4	20.2	23.8	23.3
20	40.9	40.8	40.7	40.6	40.8	40.8
21	21.3	21.3	21.3	21.3	21.3	21.3
22	136.0	136.0	135.5	135.5	136.0	136.0
23	132.4	132.4	132.9	132.9	132.4	132.4
24	43.3	43.3	43.3	43.3	43.3	43.3
25	33.5	33.5	33.5	33.5	33.5	33.5
26	20.1	20.1	20.1	20.1	20.1	20.1
27	19.8	19.8	19.8	19.8	19.8	19.8
28	17.8	17.8	17.8	17.8	17.8	17.8
$-CH_2ON=$	72.5	72.2	73.4	72.9	72.5	72.3
$C-2_{Py}$	150.9	150.9		151.2	150.9	150.9
$C-3_{Py}$	124.3	124.3	125.4	124.2	124.3	124.3
$C-4_{Py}$	139.0	139.0	139.3	139.2	139.0	139.0
C-5 _{Py}	133.7	133.7		133.2	133.6	133.6
C-6 _{Py}	149.7	149.6	149.9	149.8	149.7	149.7

TABLE 1. Chemical Shifts of C Atoms (CD₂Cl₂, δ , ppm) in ¹³C NMR Spectra of **5–10**

We used ergosterol 2 as the starting material for preparing the target compounds. Oppenauer oxidation [8] of 2 produced the 4,7,22-trien-3-one (3). Reaction of 3 with O-(2-chloropyridin-5-ylmethyl)hydroxylamine (4) in benzene formed two isomeric 3-ketoximes that were separated by column chromatography and isolated from the reaction mixture in yields of 49 and 39%, respectively.

The structure of the main reaction product was established using spectral data as (3E)-3-ketoxime (5); of the minor product, its (3Z)-isomer (6). The chemical shifts of the H-2 and H-4 resonances in PMR spectra of these compounds were very valuable for proving their structures. According to the literature [9], the spatial proximity of the electronegative O atom of the oxime causes a characteristic weak-field shift of the resonances in the PMR spectra for the H atoms that are sterically close to it compared with resonances of the analogous atoms in the other isomer. Thus, the oxime in 6 has the (*Z*)-geometry according to the chemical shift for H-4 (δ 6.41 ppm) (for comparison, the analogous resonance in the spectrum of oxime 5 has chemical shift δ 5.76 ppm). By analogy, the structure of 5 as the (*E*)-3-ketoxime could be determined by comparing chemical shifts of H-2 α (δ 2.46 ppm) and H-2 β (δ 2.57 ppm) resonances in PMR spectrum with those values in the spectrum of 6 (δ 2.19–2.29 ppm for H-2 α and -2 β).

In the next step, allylic oxidation at C-6 by chromium(VI) oxide in Py synthesized from **5** and **6** the corresponding 4,7,22-trien-3,6-diketone 3-ketoximes **7** and **8**, respectively. The structures of these followed unambiguously from the spectral data presented in Table 1 and the Experimental section.

Because of the low yield in the allylic oxidation of **5**, we attempted also to introduce the 6-ketone into **5** and **6** via oxidation by selenium dioxide. It was hypothesized that this reaction could synthesize the corresponding 6-hydroxy derivatives that could then be oxidized to the corresponding 6-ketones. However, it turned out that in both instances allylic oxidation by selenium dioxide occurred not at the more available C-6 or C-14 but at C-9 to form 9α -hydroxy derivatives **9** and **10**, respectively. The structures of these were determined by analyzing spectral data. In particular, the ¹³C NMR spectra of these compounds (Table 1) showed a characteristic shift to weak field for the C-9 resonances that was caused by the α -effect of the hydroxyl as compared with the positions of the analogous resonances in starting **5** and **6**.

EXPERIMENTAL

IR spectra were recorded on a Bomem–Michelson FTIR spectrometer in the range 700–3600 cm⁻¹. PMR and ¹³C NMR spectra were taken on a Bruker Avance 500 NMR spectrometer (operating frequency 500.13 MHz for ¹H; 125.75, ¹³C). Chemical shifts are given vs. TMS as an internal standard. Mass spectra were recorded on an Accela HPLC system with an LCQ-Fleet mass-detector (three-dimensional ion trap) using chemical ionization at atmospheric pressure (APCI) (detection of positive ions). The reactive gas was N₂. The *m/z* values are given for the strongest peaks. The course of reactions and purity of products were monitored using Kieselgel $60F_{254}$ plates (Merck). Melting points were determined on a Kofler block.

Oximation of (22E,24R)-Ergosta-4,7,22-trien-3-one (3). A solution of **3** (1.78 g, 4.51 mmol) (obtained via oxidation of **2** using the method of Oppenauer [8]) and **4** (0.87 g, 5.49 mmol) (prepared by the literature method [1]) in benzene (40 mL) was held at $12-15^{\circ}$ C for 17 h, treated with MgSO₄ (2 g), and stirred for 1.5 h. The desiccant was filtered off. The filtrate was evaporated in vacuo. The solid was chromatographed over a column of silica gel with elution by petroleum ether (70–90°C):EtOAc mixtures of increasing polarity (from 50:1 to 20:1). The unseparated portion of the product was chromatographed again over a column of silica gel with elution by cyclohexane:EtOAc mixtures of increasing polarity (from 150:1 to 20:1) to afford (3E,22E,24R)-3-(2'-chloropyridin-5'-ylmethyloximino)-ergosta-4,7,22-triene (**5**) (1.18 g, 2.2 mmol), yield 49%, mp 107–110°C. IR spectrum (KBr, v, cm⁻¹): 1636, 1587, 1568, 1460 (–C=C–C=N–).

PMR spectrum (CD₂Cl₂, δ, ppm, J/Hz): 0.59 (3H, s, 18-Me), 0.83 (3H, d, J = 8, 26/27-Me), 0.84 (3H, d, J = 8, 26/27-Me), 0.92 (3H, d, J = 7, 28-Me), 1.02 (3H, d, J = 7, 21-Me), 1.07 (3H, s, 19-Me), 2.46 (1H, ddd, J₁ = 17, J₂ = 9.5, J₃ = 5.0, H-2α), 2.57 (2H, m, H-6α, 2β), 3.04 (1H, br.d, J = 19, H-6β), 5.04 (2H, s, $-CH_2-O-N=$), 5.16-5.26 (3H, m, H-22, 23, 7), 5.76 (1H, d, J = 2, H-4), 7.30 (1H, d, J = 8, H-3_{Py}), 7.66 (1H, dd, J₁ = 8, J₂ = 2.5, H-4_{Py}), 8.34 (1H, d, J = 2.5, H-6_{Py}).

Mass spectrum (m/z): 536 $[M + 1]^+$.

Further elution isolated (3Z,22E,24R)-3-(2'-chloropyridin-5'-ylmethyloximino)-ergosta-4,7,22-triene (6) (0.93 g), yield 39%, mp 141–143°C. IR spectrum (KBr, v, cm⁻¹): 1634, 1593, 1570, 1460 (-C=C-C=N-).

PMR spectrum (CD₂Cl₂, δ, ppm, J/Hz): 0.59 (3H, s, 18-Me), 0.83 (3H, d, J = 8, 26/27-Me), 0.84 (3H, d, J = 8, 26/27-Me), 0.92 (3H, d, J = 6.5, 28-Me), 1.02 (3H, d, J = 6.5, 21-Me), 1.09 (3H, s, 19-Me), 2.19–2.29 (2H, m, H-2α, 2β), 2.60 (1H, br.d, J = 19, H-6α), 3.07 (1H, br.d, J = 19, H-6β), 5.01 (2H, s, --CH₂-O-N=), 5.16–5.26 (3H, m, H-7, 22, 23), 6.41 (1H, d, J = 2, H-4), 7.30 (1H, d, J = 8.5, H-3_{Py}), 7.66 (1H, dd, J₁ = 8.5, J₂ = 2.5, H-4_{Py}), 8.34 (1H, d, J = 2.5, H-6_{Py}).

Mass spectrum (m/z): 536 $[M + 1]^+$.

(3Z,22E,24R)-3-(2'-Chloropyridin-5'-ylmethyloximino)-ergosta-4,7,22-trien-6-one (8). A mixture of CH₂Cl₂ (30 mL) and Py (3.75 mL, 46.25 mmol) was dried over 4-Å molecular sieves (150 mg) for 24 h. The resulting mixture was stirred, treated with chromium(VI) oxide (1.85 g, 18.5 mmol), stirred for 1 h, treated with 6 (0.2 g, 0.37 mmol), and stirred for another 25 min. The excess of oxidant was neutralized by 2-propanol (2.8 mL, 37 mmol). The precipitate was filtered off and washed on the filter with CH₂Cl₂:H₂O (1:1, 60 mL). The organic phase was separated from the combined filtrate. The

aqueous layer was extracted with CH_2Cl_2 (2 × 15 mL). The organic extracts were combined and washed with H_2O (3 × 25 mL) and dried over MgSO₄. The desiccant was filtered off. The filtrate was evaporated in vacuo. The solid was co-evaporated three times with toluene and chromatographed over a column of silica gel with elution by cyclohexane:EtOAc mixtures of increasing polarity (from 17:1 to 6:1) to afford (3*Z*,22*E*,24*R*)-3-(2'-chloropyridin-5'-ylmethyloximino)-ergosta-4,7,22-trien-6-one (**8**) (0.07 g, 0.127 mmol), yield 34%, mp 155–158°C [petroleum ether (70–90°C):EtOAc]. IR spectrum (film, v, cm⁻¹): 1656, 1651, 1618, 1591, 1568, 1460 (–C=C–C=O, –C=C–C=N–).

PMR spectrum (CD₂Cl₂, δ, ppm, J/Hz): 0.67 (3H, s, 18-Me), 0.83 (3H, d, J = 8.5, 26/27-Me), 0.84 (3H, d, J = 8.5, 26/27-Me), 0.92 (3H, d, J = 7, 28-Me), 1.04 (3H, d, J = 6.5, 21-Me), 1.17 (3H, s, 19-Me), 2.34 (1H, ddd, J₁ = 11, J₂ = 7.5, J₃ = 2, H-9α), 2.38-2.41 (2H, m, H-2α, 2β), 5.09 (2H, s, $-CH_2-O-N=$), 5.19 (1H, dd, J₁ = 15.5, J₂ = 8, H-22/H-23), 5.26 (1H, dd, J₁ = 15.5, J₂ = 8, H-22/H-23), 5.87 (1H, t, J = 2, H-7), 7.26 (1H, s, H-4), 7.31 (1H, d, J = 8, H-3_{Py}), 7.68 (1H, dd, J₁ = 8, J₂ = 2.5, H-4_{Py}), 8.35 (1H, d, J = 2.5, H-6_{Py}).

Mass spectrum (m/z): 549 [M]⁺.

(3E,22E,24R)-3-(2'-Chloropyridin-5'-ylmethyloximino)-ergosta-4,7,22-trien-6-one (7). A mixture of CH_2Cl_2 (30 mL) and Py (3.95 mL, 48.75 mmol) was dried over 4-Å molecular sieves (290 mg) for 24 h. The resulting mixture was stirred, treated with chromium(VI) oxide (1.95 g, 19.5 mmol), stirred for 1 h, treated with **5** (0.228 g, 0.43 mmol), and stirred for another 20 min. The excess of oxidant was neutralized by 2-propanol (3.0 mL, 39 mmol). The mixture was treated with H_2O (15 mL). The precipitate was triturated in the biphasic system, filtered off, and washed on the filter with $CH_2Cl_2:H_2O$ (1:1, 60 mL). The organic phase was separated from the combined filtrate. The aqueous phase was extracted with CH_2Cl_2 (2 × 15 mL). The organic extracts were combined and washed with H_2O (3 × 25 mL) and dried over MgSO₄. The desiccant was filtered off. The filtrate was evaporated in vacuo. The solid was co-evaporated three times with toluene and chromatographed over a column of silica gel with elution by cyclohexane:EtOAc mixtures of increasing polarity (from 17:1 to 8:1) to afford (3E,22E,24R)-3-(2'-chloropyridin-5'-ylmethyloximino)-ergosta-4,7,22-trien-6-one (7) (0.018 g, 0.033 mmol), yield 7.7%, mp 169–173°C (hexane:EtOAc). IR spectrum (film, v, cm⁻¹): 1657, 1650, 1612, 1590, 1568, 1460 (-C=C-C=O, -C=C-C=N-).

PMR spectrum (CD₂Cl₂, δ , ppm, J/Hz): 0.67 (3H, s, 18-Me), 0.83 (3H, d, J = 8, 26/27-Me), 0.84 (3H, d, J = 8, 26/27-Me), 0.92 (3H, d, J = 7, 28-Me), 1.05 (3H, d, J = 6.5, 21-Me), 1.14 (3H, s, 19-Me), 2.31 (1H, ddd, J₁ = 18, J₂ = 5, J₃ = 2.5, H-9\alpha), 5.16 (2H, s, -CH₂-O-N), 5.19 (1H, dd, J₁ = 15.5, J₂ = 7.5, H-22/H-23), 5.26 (1H, dd, J₁ = 15.5, J₂ = 7.5, H-22/H-23), 5.87 (1H, t, J = 2, H-7), 6.79 (1H, s, H-4), 7.32 (1H, d, J = 8.5, H-3_{Py}), 7.69 (1H, dd, J₁ = 8.5, J₂ = 2.5, H-4_{Py}), 8.37 (1H, d, J = 2.5, H-6_{Py}).

Mass spectrum (m/z): 550 [M + 1]⁺.

(3*E*,22*E*,24*R*)-3-(2'-Chloropyridin-5'-ylmethyloximino)-ergosta-4,7,22-trien-9 α -ol (9). A solution of selenium dioxide (0.083 g, 0.748 mmol) in dioxane (5 mL) was stirred, treated in one portion with 5 (0.1 g, 0.187 mmol), stirred for 15 min, and filtered through a layer of Al₂O₃. The sorbent was washed successively with dioxane (5 mL) and CH₂Cl₂ (20 mL). The filtrate was evaporated to dryness in vacuo. The crystalline solid was dissolved in CH₂Cl₂ (30 mL) and washed successively with aqueous NaHCO₃ solution (5%, 2 × 15 mL) and H₂O (2 × 15 mL). The organic phase was dried over MgSO₄. The desiccant was filtered off. The filtrate was evaporated in vacuo. The product was isolated by successive crystallizations first from EtOAc and then from a petroleum ether:EtOAc mixture to afford 9 (0.036 g, 0.0653 mmol), yield 35%, mp 165–174°C.

PMR spectrum (CD₂Cl₂, δ, ppm, J/Hz): 0.59 (3H, s, 18-Me), 0.83 (3H, d, J = 8, 26/27-Me), 0.84 (3H, d, J = 8, 26/27-Me), 0.92 (3H, d, J = 7, 28-Me), 1.03 (3H, d, J = 6.5, 21-Me), 1.17 (3H, s, 19-Me), 2.67 (1H, ddd, $J_1 = 19.5$, $J_2 = 4.5$, $J_3 = 3.5$, H-6α), 3.06 (1H, br.d, J = 19.5, H-6β), 5.04 (2H, s, -CH₂-O-N=), 5.16-5.26 (3H, m, H-7, 22, 23), 5.95 (1H, d, J = 1.5, H-4), 7.30 (1H, d, J = 8.5, H-3_{Py}), 7.66 (1H, dd, $J_1 = 8.5$, $J_2 = 2$, H-4_{Py}), 8.34 (1H, d, J = 2, H-6_{Py}).

Mass spectrum (m/z): 533 $[M - H_2O]^+$.

(3Z,22E,24R)-3-(2'-Chloropyridin-5'-ylmethyloximino)-ergosta-4,7,22-trien-9 α -ol (10). A solution of selenium dioxide (0.083 g, 0.748 mmol) in dioxane (4 mL) was stirred, treated in one portion with 6 (0.1 g, 0.187 mmol), stirred for 10 min, and filtered through a layer of Al₂O₃. The sorbent was washed successively with dioxane (5 mL) and CH₂Cl₂ (20 mL). The filtrate was evaporated to ~1/3 the initial volume in vacuo. The residue was treated with CH₂Cl₂ (30 mL) and washed successively with aqueous NaHCO₃ solution (5%, 2 × 15 mL) and H₂O (4 × 15 mL). The organic phase was dried over MgSO₄. The desiccant was filtered off. The filtrate was evaporated in vacuo. The product was isolated by successive crystallizations first from EtOAc and then from a petroleum ether (70–90°C):EtOAc mixture to afford 10 (0.048 g, 0.0871 mmol), yield 46.5%, mp 165–174°C.

PMR spectrum (CD₂Cl₂, δ, ppm, J/Hz): 0.60 (3H, s, 18-Me), 0.83 (3H, d, J = 8, 26/27-Me), 0.84 (3H, d, J = 8, 26/27-Me), 0.92 (3H, d, J = 7, 28-Me), 1.03 (3H, d, J = 6.5, 21-Me), 1.21 (3H, s, 19-Me), 2.72 (1H, ddd, J₁ = 20, J₂ = 4.5, J₃ = 3.5, H-6α), 3.07 (1H, ddd, J₁ = 20, J₂ = 6, J₃ = 2.5, H-6β), 5.02 (2H, s, -CH₂-O-N=), 5.16-5.26 (3H, m, H-7, 22, 23), 6.58 (1H, d, J = 2.0, H-4), 7.31 (1H, d, J = 8, H-3_{Py}), 7.67 (1H, dd, J₁ = 8, J₂ = 2.5, H-4_{Py}), 8.35 (1H, d, J = 2.5, H-6_{Py}).

Mass spectrum (m/z): 533 [M – H₂O]⁺.

REFERENCES

- 1. N. V. Kovganko, S. N. Sokolov, Yu. G. Chernov, Zh. N. Kashkan, and V. L. Survilo, *Khim. Prir. Soedin.*, 632 (2010).
- 2. N. V. Kovganko and Zh. N. Kashkan, Zh. Org. Khim., 40, No. 12, 1759 (2004).
- 3. T. F. Spande, H. M. Garraffo, M. W. Edwards, H. J. C. Yeh, L. Panel, and J. W. Daly, *J. Am. Chem. Soc.*, **114**, 3475 (1992).
- 4. A. Malorni, L. Minale, and R. Riccio, *Nouv. J. Chim.*, **2**, 351 (1978).
- 5. N. V. Kovganko, *Khim. Prir. Soedin.*, 691 (1999).
- 6. M. Hirotani, I. Asaka, C. Ino, T. Furuya, and M. Shiro, *Phytochemistry*, **26**, No. 10, 2797 (1987).
- 7. N. Kawahara, S. Sekita, and M. Satake, *Phytochemistry*, **37**, 213 (1994).
- 8. N. V. Kovganko and S. N. Sokolov, *Khim. Prir. Soedin.*, 354 (1999).
- 9. J. G. Cui, L. Fan, L. L. Huang, H. L. Liu, and A. M. Zhou, Steroids, 74, 62 (2009).